B.Sc. (Physical Sciences/ Mathematical Sciences) with Mathematics as one of the Core Disciplines

Category III

DISCIPLINE SPECIFIC CORE COURSE: TOPICS IN CALCULUS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course		Credits	Credit distribution of the course			Eligibility	Pre-requisite
title	&		Lecture	Tutorial	Practical/	criteria	of the course
Code					Practice		(if any)
Topics	in					Class XII	Nil
Calculus		4	3	1	0	pass with	
						Mathematics	

Learning Objectives

The primary objective of this course is to:

- Introduce the basic tools of calculus which are helpful in understanding their applications in many real-world problems.
- Understand/create various mathematical models in everyday life.

Learning outcomes

This course will enable the students to:

- Understand continuity and differentiability in terms of limits and graphs of certain functions.
- Describe asymptotic behaviour in terms of limits involving infinity.
- Use of derivatives to explore the behaviour of a given function locating and classify its extrema and graphing the function.
- Apply the concepts of asymptotes, and inflexion points in tracing of cartesian curves.
- Compute the reduction formulae of standard transcendental functions with applications.

SYLLABUS OF DSC

Theory

Unit – 1

Limits, Continuity and Differentiability

Limit of a function, $\varepsilon - \delta$ definition of a limit, Infinite limits, Continuity and types of discontinuities; Differentiability of a function, Successive differentiation: Calculation of the nth derivatives, Leibnitz theorem; Partial differentiation, Euler's theorem on homogeneous functions.

(20 hours)

Unit – 2

Mean Value Theorems and its Applications

Rolle's theorem, Mean value theorems and applications to monotonic functions and inequalities; Taylor's theorem, Taylor's series, Maclaurin's series expansions of

 e^x , sin x, cos x, log (1+x) and $(1+x)^m$; Indeterminate forms.

Unit – 3

(20 hours)

Tracing of Curves and Reduction Formulae

Asymptotes (parallel to axes and oblique), Concavity and inflexion points, Singular points, Tangents at the origin and nature of singular points, Curve tracing (cartesian and polar equations). Reduction formulae for $\int \sin^n x \, dx$, $\int \cos^n x \, dx$, and $\int \sin^m x \cos^n x \, dx$ and their applications.

Practical component (if any) - NIL

Essential Readings

- Prasad, Gorakh (2016). Differential Calculus (19th ed.). Pothishala Pvt. Ltd. Allahabad.
- Prasad, Gorakh (2015). Integral Calculus. Pothishala Pvt. Ltd. Allahabad.

Suggestive Readings

- Apostol, T. M. (2007). Calculus: One-Variable Calculus with An Introduction to Linear Algebra (2nd ed.). Vol. 1. Wiley India Pvt. Ltd.
- Ross, Kenneth. A. (2013). Elementary Analysis: The Theory of Calculus (2nd ed.). Undergraduate Texts in Mathematics, Springer. Indian reprint.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

(20 hours)